Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.706
Filtrar
1.
PeerJ ; 12: e16870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563014

RESUMO

The brinjal fruit and shoot borer (BFSB), Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), is a very detrimental pest that causes significant economic losses to brinjal crop worldwide. Infested brinjal fruits were collected from vegetable fields located at the ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India, during two consecutive seasons (2021-2022). The larvae of the pest were brought to the laboratory and reared under controlled conditions of 25 ± 0.5 °C and 70 ± 5% relative humidity, for the emergence of parasitoids. In addition, the survey of Hymenoptera parasitoids in brinjal was conducted utilizing a sweep net and yellow pan trap over the course of two seasons. The results reveal that five parasitoid species were emerged from L. orbonalis viz., Apanteles hemara Nixon, 1965, Bracon greeni Ashmead 1896 (Hymenoptera: Braconidae), Goryphus nursei (Cameron, 1907), Trathala flavoorbitalis (Cameron, 1907) (Hymenoptera: Ichneumonidae) and Spalangia gemina Boucek 1963 (Hymenoptera: Spalangiidae). Out of these, A. hemara and S. gemina were documented as new occurrences in Delhi. Additionally, A. hemara was recorded for the first time as a parasite on L. orbonalis. Trathala flavoorbitalis was observed during both seasons and exhibited higher parasitism reaching 15.55% and 18.46% in July and August 2022, respectively. However, the average parasitism (%) recorded by A. hemara, B. greeni, G. nursei, T. flavoorbitalis and S. gemina was 3.10%, 1.76%, 1.10%, 9.28% and 1.20% respectively. Furthermore, the findings showed a significant (p ≤ 0.01) strongly positive correlation between fruit infestation (%) by L. orbonalis and parasitism (%). The survey indicates the presence of a broad group (19 families and 60 species) of Hymenoptera parasitoids in the brinjal crop ecosystem in Delhi which could be valuable in biological control. In light of these results, this study revealed that A. hemara and other parasitoids identified in this study alongside T. flavoorbitalis would be ideal biocontrol agents within the integrated pest management (IPM) program of BFSB in Delhi.


Assuntos
Himenópteros , Mariposas , Solanum melongena , Humanos , Animais , Solanum melongena/parasitologia , Ecossistema , Complexo Ferro-Dextran , Mariposas/parasitologia , Biodiversidade
2.
Glob Chang Biol ; 30(4): e17269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563238

RESUMO

Tree monocultures constitute an increasing fraction of the global tree cover and are the dominant tree-growing strategy of forest landscape restoration commitments. Their advantages to produce timber are well known, but their value for biodiversity is highly controversial and context dependent. Therefore, understanding whether, and in which conditions, they can harbor native species regeneration is crucial. Here, we conducted meta-analyses based on a global survey of the literature and on a database created with local, unpublished studies throughout Brazil to evaluate the regeneration potential of native species under tree monocultures and the way management influences this regeneration. Native woody species regeneration under tree monocultures harbors a substantial fraction of the diversity (on average 40% and 68% in the global and Brazilian surveys, respectively) and abundance (on average 25% and 60% in the global and Brazilian surveys, respectively) of regeneration observed in natural forests. Plantations with longer rotation lengths, composed of native tree species, and located adjacent to forest remnants harbor more species. Pine plantations harbor more native individuals than eucalypt plantations, and the abundance of regenerating trees is higher in sites with higher mean temperatures. Species-area curves revealed that the number of woody species under pine and eucalypt plantations in Brazil is 606 and 598 species, respectively, over an aggregated sampled area of ca. 12 ha. We highlight that the understory of tree monocultures can harbor a considerable diversity of regenerating native species at the landscape and regional scales, but this diversity strongly depends on management. Long-rotation length and favorable location are key factors for woody regeneration success under tropical tree monocultures. Therefore, tree monocultures can play a role in forest landscape restoration and conservation, but only if they are planned and managed for achieving this purpose.


Assuntos
Pinus , Árvores , Humanos , Florestas , Biodiversidade , Brasil , Ecossistema
3.
Glob Chang Biol ; 30(4): e17263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556772

RESUMO

Natural and anthropogenic disturbances have led to rapid declines in the amount and quality of available habitat in many ecosystems. Many studies have focused on how habitat loss has affected the composition and configuration of habitats, but there have been fewer studies that investigate how this loss affects ecosystem function. We investigated how a large-scale seagrass die-off altered the distribution of energetic resources of three seagrass-associated consumers with varied resource use patterns. Using long-term benthic habitat monitoring data and resource use data from Bayesian stable isotope mixing models, we generated energetic resource landscapes (E-scapes) annually between 2007 and 2019. E-scapes link the resources being used by a consumer to the habitats that produce those resources to calculate a habitat resource index as a measurement of energetic quality of the landscape. Overall, our results revealed that following the die-off there was a reduction in trophic function across all species in areas affected by the die-off event, but the response was species-specific and dependent on resource use and recovery patterns. This study highlights how habitat loss can lead to changes in ecosystem function. Incorporating changes in ecosystem function into models of habitat loss could improve understanding of how species will respond to future change.


Assuntos
Biodiversidade , Ecossistema , Teorema de Bayes
4.
Glob Chang Biol ; 30(4): e17254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556898

RESUMO

Freshwaters are highly threatened ecosystems that are vulnerable to chemical pollution and climate change. Freshwater taxa vary in their sensitivity to chemicals and changes in species composition can potentially affect the sensitivity of assemblages to chemical exposure. Here we explore the potential consequences of future climate change on the composition and sensitivity of freshwater macroinvertebrate assemblages to chemical stressors using the UK as a case study. Macroinvertebrate assemblages under end of century (2080-2100) and baseline (1980-2000) climate conditions were predicted for 608 UK sites for four climate scenarios corresponding to mean temperature changes of 1.28 to 3.78°C. Freshwater macroinvertebrate toxicity data were collated for 19 chemicals and the hierarchical species sensitivity distribution model was used to predict the sensitivity of untested taxa using relatedness within a Bayesian approach. All four future climate scenarios shifted assemblage compositions, increasing the prevalence of Mollusca, Crustacea and Oligochaeta species, and the insect taxa of Odonata, Chironomidae, and Baetidae species. Contrastingly, decreases were projected for Plecoptera, Ephemeroptera (except for Baetidae) and Coleoptera species. Shifts in taxonomic composition were associated with changes in the percentage of species at risk from chemical exposure. For the 3.78°C climate scenario, 76% of all assemblages became more sensitive to chemicals and for 18 of the 19 chemicals, the percentage of species at risk increased. Climate warming-induced increases in sensitivity were greatest for assemblages exposed to metals and were dependent on baseline assemblage composition, which varied spatially. Climate warming is predicted to result in changes in the use, environmental exposure and toxicity of chemicals. Here we show that, even in the absence of these climate-chemical interactions, shifts in species composition due to climate warming will increase chemical risk and that the impact of chemical pollution on freshwater macroinvertebrate biodiversity may double or quadruple by the end of the 21st century.


Assuntos
Ecossistema , Poluentes Ambientais , Animais , Teorema de Bayes , Biodiversidade , Poluição Ambiental , Invertebrados , Rios
5.
Proc Biol Sci ; 291(2020): 20232874, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565152

RESUMO

Protected area (PA) networks are a pivotal tool to fight biodiversity loss, yet they often need to balance the mission of nature conservation with the socio-economic need of giving opportunity for outdoor recreation. Recreation in natural areas is important for human health in an urbanized society, but can prompt behavioural modifications in wild animals. Rarely, however, have these responses being studied across multiple PAs and using standardized methods. We deployed a systematic camera trapping protocol at over 200 sites to sample medium and large mammals in four PAs within the European Natura 2000 network to assess their spatio-temporal responses to human frequentation, proximity to towns, amount of open habitat and topographical variables. By applying multi-species and single-species models for the number of diurnal, crepuscular and nocturnal detections and a multi-species model for nocturnality index, we estimated both species-specific- and meta-community-level effects, finding that increased nocturnality appeared the main strategy that the mammal meta-community used to cope with human disturbance. However, responses in the diurnal, crepuscular and nocturnal site use were mediated by species' body mass, with larger species exhibiting avoidance of humans and smaller species more opportunistic behaviours. Our results show the effectiveness of standardized sampling and provide insights for planning the expansion of PA networks as foreseen by the Kunming-Montreal biodiversity agreement.


Assuntos
Conservação dos Recursos Naturais , Mamíferos , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Mamíferos/fisiologia , Ecossistema , Animais Selvagens , Biodiversidade , Itália
6.
Sci Adv ; 10(14): eadl0335, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569032

RESUMO

The rapid growth of clean energy technologies is driving a rising demand for critical minerals. In 2022 at the 15th Conference of the Parties to the Convention on Biological Diversity (COP15), seven major economies formed an alliance to enhance the sustainability of mining these essential decarbonization minerals. However, there is a scarcity of studies assessing the threat of mining to global biodiversity. By integrating a global mining dataset with great ape density distribution, we estimated the number of African great apes that spatially coincided with industrial mining projects. We show that up to one-third of Africa's great ape population faces mining-related risks. In West Africa in particular, numerous mining areas overlap with fragmented ape habitats, often in high-density ape regions. For 97% of mining areas, no ape survey data are available, underscoring the importance of increased accessibility to environmental data within the mining sector to facilitate research into the complex interactions between mining, climate, biodiversity, and sustainability.


Assuntos
Hominidae , Animais , Ecossistema , Biodiversidade , Minerais , África Ocidental
7.
Braz J Biol ; 84: e275828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597516

RESUMO

Urban environments present less environmental heterogeneity in relation to the natural ones, affecting the biodiversity of bats and the ecological processes in which they participate. In this way, we will identify how urbanization influences the structure of bat communities in the municipality of Goiânia, Goiás, Brazil. We compared species composition, guilds and bat richness in a gradient that crossed urban, semi-urban and natural areas in the municipality of Goiânia, contained in the Cerrado biome. We captured a total of 775 bats of 16 species distributed in three families. Urban areas had a higher species abundance, while semi-urban areas had a higher species richness. The three types of environments have different compositions, the urban one being more homogeneous, the fauna in these areas is composed of generalist species, which benefit from this process. The diversity present in semi-urban areas is a consequence of the intersection between urban and natural fauna, which is why urban expansion needs to occur in a planned manner to minimize the impacts of this process and ensure the maintenance of biodiversity.


Assuntos
Quirópteros , Humanos , Animais , Urbanização , Brasil , Pradaria , Ecossistema , Biodiversidade
8.
Ecol Lett ; 27(4): e14423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584578

RESUMO

Forest litter decomposition is an essential component of global carbon and nutrient turnover. Invertebrates play important roles in litter decomposition, but the regional pattern of their effects is poorly understood. We examined 476 case studies across 93 sites and performed a meta-analysis to estimate regional effects of invertebrates on forest litter decomposition. We then assessed how invertebrate diversity, climate and soil pH drive regional variations in invertebrate-mediated decomposition. We found that (1) invertebrate contributions to litter decomposition are 1.4 times higher in tropical and subtropical forests than in forests elsewhere, with an overall contribution of 31% to global forest litter decomposition; and (2) termite diversity, together with warm, humid and acidic environments in the tropics and subtropics are positively associated with forest litter decomposition by invertebrates. Our results demonstrate the significant difference in invertebrate effects on mediating forest litter decomposition among regions. We demonstrate, also, the significance of termites in driving litter mass loss in the tropics and subtropics. These results are particularly pertinent in the tropics and subtropics where climate change and human disturbance threaten invertebrate biodiversity and the ecosystem services it provides.


Assuntos
Ecossistema , Florestas , Animais , Biodiversidade , Invertebrados , Folhas de Planta , Solo/química
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230323, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583467

RESUMO

Monitoring the extent to which invasive alien species (IAS) negatively impact the environment is crucial for understanding and mitigating biological invasions. Indeed, such information is vital for achieving Target 6 of the Kunming-Montreal Global Biodiversity Framework. However, to-date indicators for tracking the environmental impacts of IAS have been either lacking or insufficient. Capitalizing on advances in data availability and impact assessment protocols, we developed environmental impact indicators to track realized and potential impacts of IAS. We also developed an information status indicator to assess the adequacy of the data underlying the impact indicators. We used data on 75 naturalized amphibians from 82 countries to demonstrate the indicators at a global scale. The information status indicator shows variation in the reliability of the data and highlights areas where absence of impact should be interpreted with caution. Impact indicators show that growth in potential impacts are dominated by predatory species, while potential impacts from both predation and disease transmission are distributed worldwide. Using open access data, the indicators are reproducible and adaptable across scales and taxa and can be used to assess global trends and distributions of IAS, assisting authorities in prioritizing control efforts and identifying areas at risk of future invasions. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Espécies Introduzidas , Animais , Reprodutibilidade dos Testes , Anfíbios , Ecossistema
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230015, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583468

RESUMO

Expanding and managing current habitat and species protection measures is at the heart of the European biodiversity strategy. A structured approach is needed to gain insights into such issues is systematic conservation planning, which uses techniques from decision theory to identify places and actions that contribute most effectively to policy objectives given a set of constraints. Yet culturally and historically determined European landscapes make the implementation of any conservation plans challenging, requiring an analysis of synergies and trade-offs before implementation. In this work, we review the scientific literature for evidence of previous conservation planning approaches, highlighting recent advances and success stories. We find that the conceptual characteristics of European conservation planning studies likely reduced their potential in contributing to better-informed decisions. We outline pathways towards improving the uptake of decision theory and multi-criteria conservation planning at various scales, particularly highlighting the need for (a) open data and intuitive tools, (b) the integration of biodiversity-focused conservation planning with multiple objectives, (c) accounting of dynamic ecological processes and functions, and (d) better facilitation of entry-points and co-design practices of conservation planning scenarios with stakeholders. By adopting and improving these practices, European conservation planning might become more actionable and adaptable towards implementable policy outcomes. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Biodiversidade , Europa (Continente)
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230324, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583470

RESUMO

Human activities are causing taxonomic rearrangements across ecosystems that often result in the emergence of novel communities (assemblies with no historical representative). It is commonly assumed that these changes in the taxonomic makeup of ecosystems also inevitably lead to changes in other aspects of biodiversity, namely functional and phylogenetic diversity. However, this assumption is not always valid, as the changes in functional and phylogenetic composition resulting from taxonomic shifts depend on the level of redundancy in the evaluated community. Therefore, we need improved theoretical frameworks to predict when we can expect coordinated or decoupled responses among these three facets of biodiversity. To advance this understanding, we discuss the conceptual and methodological issues that complicate establishing a link between taxonomic rearrangements driven by human activities and the associated functional and phylogenetic changes. Here, we show that is crucial to consider the expected changes in functional and phylogenetic composition as communities are reshaped owing to human drivers of biodiversity loss to forecast the impacts of novel assemblages on ecosystem functions and the services they provide to humanity. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Ecossistema , Humanos , Filogenia , Osso e Ossos
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230334, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583466

RESUMO

Restoring wild communities of large herbivores is critical for the conservation of biodiverse ecosystems, but environmental changes in the twenty-first century could drastically affect the availability of habitats. We projected future habitat dynamics for 18 wild large herbivores in Europe and the relative future potential patterns of species richness and assemblage mean body weight considering four alternative scenarios of socioeconomic development in human society and greenhouse gas emissions (SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, SSP5-RCP8.5). Under SSP1-RCP2.6, corresponding to a transition towards sustainable development, we found stable habitat suitability for most species and overall stable assemblage mean body weight compared to the present, with an average increase in species richness (in 2100: 3.03 ± 1.55 compared to today's 2.25 ± 1.31 species/area). The other scenarios are generally unfavourable for the conservation of wild large herbivores, although under the SSP5-RCP8.5 scenario there would be increase in species richness and assemblage mean body weight in some southern regions (e.g. + 62.86 kg mean body weight in Balkans/Greece). Our results suggest that a shift towards a sustainable socioeconomic development would overall provide the best prospect of our maintaining or even increasing the diversity of wild herbivore assemblages in Europe, thereby promoting trophic complexity and the potential to restore functioning and self-regulating ecosystems. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Ecossistema , Herbivoria , Humanos , Biodiversidade , Peso Corporal , Península Balcânica , Mudança Climática
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230013, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583472

RESUMO

Species respond dynamically to climate change and exhibit time lags. Consequently, species may not occupy their full climatic niche during range shifting. Here, we assessed climate niche tracking during recent range shifts of European and United States (US) birds. Using data from two European bird atlases and from the North American Breeding Bird Survey between the 1980s and 2010s, we analysed range overlap and climate niche overlap based on kernel density estimation. Phylogenetic multiple regression was used to assess the effect of species morphological, ecological and biogeographic traits on range and niche metrics. European birds shifted their ranges north and north-eastwards, US birds westwards. Range unfilling was lower than expected by null models, and niche expansion was more common than niche unfilling. Also, climate niche tracking was generally lower in US birds and poorly explained by species traits. Overall, our results suggest that dispersal limitations were minor in range shifting birds in Europe and the USA while delayed extinctions from unfavourable areas seem more important. Regional differences could be related to differences in land use history and monitoring schemes. Comparative analyses of range and niche shifts provide a useful screening approach for identifying the importance of transient dynamics and time-lagged responses to climate change. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Aves , Animais , Estados Unidos , Filogenia , Aves/fisiologia , Mudança Climática , América do Norte , Ecossistema
14.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230014, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583473

RESUMO

In 2050, most areas of biodiversity significance will be heavily influenced by multiple drivers of environmental change. This includes overlap with the introduced ranges of many alien species that negatively impact biodiversity. With the decline in biodiversity and increase in all forms of global change, the need to envision the desired qualities of natural systems in the Anthropocene is growing, as is the need to actively maintain their natural values. Here, we draw on community ecology and invasion biology to (i) better understand trajectories of change in communities with a mix of native and alien populations, and (ii) to frame approaches to the stewardship of these mixed-species communities. We provide a set of premises and actions upon which a nature-positive future with biological invasions (NPF-BI) could be based, and a decision framework for dealing with uncertain species movements under climate change. A series of alternative management approaches become apparent when framed by scale-sensitive, spatially explicit, context relevant and risk-consequence considerations. Evidence of the properties of mixed-species communities together with predictive frameworks for the relative importance of the ecological processes at play provide actionable pathways to a NPF in which the reality of mixed-species communities are accommodated and managed. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Ecossistema , Espécies Introduzidas , Mudança Climática , Teoria da Decisão
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230335, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583469

RESUMO

European grasslands are among the most species-rich ecosystems on small spatial scales. However, human-induced activities like land use and climate change pose significant threats to this diversity. To explore how climate and land cover change will affect biodiversity and community composition in grassland ecosystems, we conducted joint species distribution models (SDMs) on the extensive vegetation-plot database sPlotOpen to project distributions of 1178 grassland species across Europe under current conditions and three future scenarios. We further compared model accuracy and computational efficiency between joint SDMs (JSDMs) and stacked SDMs, especially for rare species. Our results show that: (i) grassland communities in the mountain ranges are expected to suffer high rates of species loss, while those in western, northern and eastern Europe will experience substantial turnover; (ii) scaling anomalies were observed in the predicted species richness, reflecting regional differences in the dominant drivers of assembly processes; (iii) JSDMs did not outperform stacked SDMs in predictive power but demonstrated superior efficiency in model fitting and predicting; and (iv) incorporating co-occurrence datasets improved the model performance in predicting the distribution of rare species. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Ecossistema , Pradaria , Humanos , Biodiversidade , Europa (Continente) , União Europeia , Mudança Climática
16.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230022, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583475

RESUMO

Recent climate change has effectively rewound the climate clock by approximately 120 000 years and is expected to reverse this clock a further 50 Myr by 2100. We aimed to answer two essential questions to better understand the changes in ecosystems worldwide owing to predicted climate change. Firstly, we identify the locations and time frames where novel ecosystems could emerge owing to climate change. Secondly, we aim to determine the extent to which biomes, in their current distribution, will experience an increase in climate-driven ecological novelty. To answer these questions, we analysed three perspectives on how climate changes could result in novel ecosystems in the near term (2100), medium (2200) and long term (2300). These perspectives included identifying areas where climate change could result in new climatic combinations, climate isoclines moving faster than species migration capacity and current environmental patterns being disaggregated. Using these metrics, we determined when and where novel ecosystems could emerge. Our analysis shows that unless rapid mitigation measures are taken, the coverage of novel ecosystems could be over 50% of the land surface by 2100 under all change scenarios. By 2300, the coverage of novel ecosystems could be above 80% of the land surface. At the biome scale, these changes could mean that over 50% of locations could shift towards novel ecosystems, with the majority seeing these changes in the next few decades. Our research shows that the impact of climate change on ecosystems is complex and varied, requiring global action to mitigate and adapt to these changes. This article is part of the theme issue 'Biodiversity dynamics and stewardship in a transforming biosphere'. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Adaptação Fisiológica , Benchmarking
17.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230016, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583471

RESUMO

Forest diversity is the outcome of multiple species-specific processes and tolerances, from regeneration, growth, competition and mortality of trees. Predicting diversity thus requires a comprehensive understanding of those processes. Regeneration processes have traditionally been overlooked, due to high stochasticity and assumptions that recruitment is not limiting for forests. Thus, we investigated the importance of seed production and seedling survival on forest diversity in the Pacific Northwest (PNW) using a forest gap model (ForClim). Equations for regeneration processes were fit to empirical data and added into the model, followed by simulations where regeneration processes and parameter values varied. Adding regeneration processes into ForClim improved the simulation of species composition, compared to Forest Inventory Analysis data. We also found that seed production was not as important as seedling survival, and the time it took for seedlings to grow into saplings was a critical recruitment parameter for accurately capturing tree species diversity in PNW forest stands. However, our simulations considered historical climate only. Due to the sensitivity of seed production and seedling survival to weather, future climate change may alter seed production or seedling survival and future climate change simulations should include these regeneration processes to predict future forest dynamics in the PNW. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Florestas , Árvores , Biodiversidade , Plântula , Noroeste dos Estados Unidos
18.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230011, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583474

RESUMO

Most emissions scenarios suggest temperature and precipitation regimes will change dramatically across the globe over the next 500 years. These changes will have large impacts on the biosphere, with species forced to migrate to follow their preferred environmental conditions, therefore moving and fragmenting ecosystems. However, most projections of the impacts of climate change only reach 2100, limiting our understanding of the temporal scope of climate impacts, and potentially impeding suitable adaptive action. To address this data gap, we model future climate change every 20 years from 2000 to 2500 CE, under different CO2 emissions scenarios, using a general circulation model. We then apply a biome model to these modelled climate futures, to investigate shifts in climatic forcing on vegetation worldwide, the feasibility of the migration required to enact these modelled vegetation changes, and potential overlap with human land use based on modern-day anthromes. Under a business-as-usual scenario, up to 40% of terrestrial area is expected to be suited to a different biome by 2500. Cold-adapted biomes, particularly boreal forest and dry tundra, are predicted to experience the greatest losses of suitable area. Without mitigation, these changes could have severe consequences both for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Ecossistema , Humanos , Tundra , Mudança Climática , Temperatura
19.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230010, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583479

RESUMO

In the Anthropocene, intensifying ecological disturbances pose significant challenges to our predictive capabilities for ecosystem responses. Macroecology-which focuses on emergent statistical patterns in ecological systems-unveils consistent regularities in the organization of biodiversity and ecosystems. These regularities appear in terms of abundance, body size, geographical range, species interaction networks, or the flux of matter and energy. This paper argues for moving beyond qualitative resilience metaphors, such as the 'ball and cup', towards a more quantitative macroecological framework. We suggest a conceptual and theoretical basis for ecological resilience that integrates macroecology with a stochastic diffusion approximation constrained by principles of biological symmetry. This approach provides an alternative novel framework for studying ecological resilience in the Anthropocene. We demonstrate how our framework can effectively quantify the impacts of major disturbances and their extensive ecological ramifications. We further show how biological scaling insights can help quantify the consequences of major disturbances, emphasizing their cascading ecological impacts. The nature of these impacts prompts a re-evaluation of our understanding of resilience. Emphasis on regularities of ecological assemblages can help illuminate resilience dynamics and offer a novel basis to predict and manage the impacts of disturbance in the Anthropocene more efficiently. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Ecossistema , Resiliência Psicológica , Biodiversidade , Geografia , Ecologia
20.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230021, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583478

RESUMO

Today's biodiversity crisis fundamentally threatens the habitability of the planet, thus ranking among the primary human challenges of our time. Much emphasis is currently placed on the loss of biodiversity in the Anthropocene, yet these debates often portray biodiversity as a purely natural phenomenon without much consideration of its human dimensions and frequently lack long-term vistas. This paper offers a deep-time perspective on the key role of the evolving human niche in ecosystem functioning and biodiversity dynamics. We summarize research on past hunter-gatherer ecosystem contributions and argue that human-environment feedback systems with important biodiversity consequences are probably a recurrent feature of the Late Pleistocene, perhaps with even deeper roots. We update current understandings of the human niche in this light and suggest that the formation of palaeo-synanthropic niches in other animals proffers a powerful model system to investigate recursive interactions of foragers and ecosystems. Archaeology holds important knowledge here and shows that ecosystem contributions vary greatly in relation to different human lifeways, some of which are lost today. We therefore recommend paying more attention to the intricate relationship between biodiversity and cultural diversity, contending that promotion of the former depends on fostering the latter. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Arqueologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA